目前全球约有5500万认知障碍症患者。而随着人口老龄化,预计到2050年这一数字将增加到约1.39亿。在认知障碍症中,AD患者(认知障碍症的一种)的人数最多,预计今后这一趋势还会继续。
富士胶片株式会社(以下简称“富士胶片”)和日本国立精神·神经医疗研究中心宣布了利用富士胶片全新的AI技术预测轻度认知功能障碍症(MCI)患者是否会在两年内进展为阿尔茨海默病(AD)的积极研究成果。
这项用于AD进展预测的人工智能技术的准确率达88%,该研究成果已于4月12日在国际学术期刊《自然》杂志子刊《npj Digital Medicine》上发表。该技术是由富士胶片基于其先进的图像识别技术以及机器学习方面的专业知识所开发的。本研究是在日本国立研究开发法人科学技术振兴机构产学共创平台共同研究推进项目(JST、OPERA、JPMJOP1842)的赞助下实施的。
近年来,大量研究报告表明,通过引入深度学习,图像识别准确率可以显著提升,但要达到深度学习的效果,需要大量的学习数据支持。然而,目前世界最大的AD研究项目NA-ADNI的公共数据库中,也不过只有约1000名MCI患者的数据。通常,在物体识别研究领域,要形成深度学习需要超过1000万张图像。在这种情况下,如何通过有限的数据确立高准确率的AI预测技术无疑是一项巨大的挑战。为了解决这个问题,富士胶片决定建立一种AD进展预测AI技术,以大脑中与AD进展高度相关的特定区域为对象,利用深度学习预测AD的进展。
富士胶片利用其在摄影和医疗领域积累的先进图像识别技术,从脑部三维MRI图像中,分别对以(1)海马体、(2)前颞叶为中心的区域进行识别,因为,这两块区域被认为与AD进展最为相关。
利用深度学习,从以(1)海马体、(2)前颞叶为中心的两个区域,提取与AD进展相关的详细萎缩模式,并计算其图像特征。AI进而专注于两个区域确认的、对读片诊断起重要作用的海马体区域和杏仁体区域的萎缩模式,并依据其模式识别其向AD的进展。
使用NA-ADNI公共数据库的MCI患者数据进行学习。除了被认为与AD进展高度相关的脑内特定区域的图像特征外,还确立了通过认知能力测试评分等多种临床信息进行高精度AD进展预测的技术。
富士胶片和日本国立精神·神经医疗研究中心的研究小组,采用AD进展预测AI技术,预测2年内患者是否会从MCI进展至AD。除了将AD进展预测AI技术应用于NA-ADNI数据库外,还将其应用于未学习过的J-ADNI数据库,对该技术的预测准确性进行了客观的评估。
在预测MCI患者是否会发展为AD患者时,NA-ADNI的预测正确率为88%,J-ADNI为84%。
同时,与准确率同等重要的AI精度指标AUC,NA-ADNI为0.95、J-ADNI为0.91。
综上所述,AD进展预测AI技术可以高精度地预测不同人种从MCI到AD的进展,属于可推广性较高的AI技术。
未来,富士胶片和日本国立精神·神经医疗研究中心将进一步验证该技术,以期更好地应用在针对AD疾病治疗的临床实验中,对患者进行分层。同时,还将探讨将AD进展预测AI技术的算法推广到各种精神疾病和神经系统疾病的脑部图像和临床数据中应用。这关系到患者预后和对治疗的反应预测,富士胶片希望在推动个性化医疗方面能发挥重要作用。
免责声明:市场有风险,选择需谨慎!此文仅供参考,不作买卖依据。