(相关资料图)
数字时代,数据共享互通成为刚需
数字经济时代,云计算、大数据、人工智能等新技术快速发展,非结构化数据爆发式增长,数据类型变得愈发复杂多样。在自动驾驶、基因测序、气象预报等云数智应用场景中,一次数据处理可能会涉及到文件、对象、大数据等多种协议,数据间的互通转换成为数据存储中至关重要的一环,具备平台化能力的融合存储成为数字基础设施建设的核心。
以基因测序场景为例,一次完整的基因测序涉及到数据采集、格式化、脱敏、压缩、分析、发布等操作,其过程可以大致分为样本采集、DNA/RNA测序、数据分析和发布四个步骤。在不同的处理阶段,需要使用不同的数据协议进行操作。其中在样本采集和DNA/RNA测序阶段采用NFS文件协议,数据分析阶段采用HDFS大数据协议,数据发布阶段则是通过公网数据共享采用S3对象协议。整个数据处理过程涉及三种协议格式,这就意味着完成一次基因的测序流程需要在NFS、HDFS和S3之间进行两次数据拷贝和数据格式的转换。传统存储仅支持单一的访问协议,这就会造成两个问题:一是数据格式转换和数据拷贝会降低整个数据处理流程的效率;二是多套存储副本增加存储空间成本。
基因测序应用需要使用多种数据协议